Day: 5 Topics: Linear Systems of Equations (A.4 d, e) and Inequalities (A.5 d), and Quadratic Equations (A.4 b)

Systems and Quadratic Equations

System of Linear Equations

- . A system of linear equations is a set of two or more linear equations with the same variables.
- The solution to system of linear equations is usually an <u>ordered pair</u>, but it can also be <u>infinitely many</u> solutions or no solution.
 - o If the graphs of the equations intersect, then the point of intersection is the solution.
 - o If the equations represent the same line, then there are infinitely many solutions.
 - o If the equations represent parallel lines, then there is no solution.
- · You probably learned three methods to solve a system: graphing, substitution, and elimination.

With Desmos, we can use the graphing method to solve all systems.

Open www.desmos.com/testing/virginia/graphing and type each equation in its own field.

Find the solution to the system:

$$\begin{cases} 3x + 2y = 22 \\ -x + 4y = 2 \end{cases}$$

(6,2)

Find the solution to the system:

$$\begin{cases} 15x + 5y = 20 \\ y = 8 - 3x \end{cases}$$

No solution

Because we can use Desmos, you may be asked to do more than simply find the solution.

Skyler buys 8 T-shirts and 5 hats for \$220. The next day, he buys 5 T-shirts and 1 hat for \$112. How much does each T-shirt and each hat cost? Write a system of equations that can be used to solve the problem. Then solve the problem.

X: cost T-shirt
Y: cost hat

$$8x+5y=220$$

 $5x+1y=112$

As a first step in solving the systems shown, Yumiko multiplies both sides of the equation 2x - 3y = 12 by

2x - 3y = 12y
the multiply both sides of

5x + 6y = 18

6. By what factor should she multiply both sides of the other equation so she can add the equations and eliminate a variable?

$$6(2x-3y=12)$$

$$\frac{12x-18y=72}{3(5x+6y=18)}$$
 $\frac{12x-18y=72}{15x+18y=5}$

System of Linear Inequalities

- A <u>system</u> of linear inequalities is a <u>set</u> of two or more linear inequalities with the <u>same variables</u>.
- The solution to system of linear inequalities is usually a set of ordered pairs in a shaded region on a
 graph, but it can also have no solution.
- The solution to a system of linear inequalities can only be found by graphing.

Graph this system on Desmos and give three ordered pairs that are part of the solution set.

$$\begin{cases} y > \frac{1}{2}x + 1 \\ y + 3x \le 6 \end{cases}$$

Eli began graphing the system shown. Which region on the graph must he shade to complete the graph?

Malik can spend no more than \$24 to buy pecans and cashews. He will pay \$6 per pound for pecans and \$8 per pound for cashews. Which graph best represents the number of pounds of pecans and

Quadratic Equations

- A quadratic equation usually has two solutions, but it could also have just one solution or no solution.
- The graph of a quadratic equation is a parabola. The solutions are the x-intercepts.
- To graph: set the equation equal to zero, type the other side into Desmos.

Topics: Linear Systems of Equations (A.4 d, e) and Inequalities (A.5 d), and Quadratic Equations (A.4 b)

Key Concepts:

- The types of solutions possible for systems and quadratic equations.
- Using Desmos to help determine the solutions of linear systems and quadratic equations.

Guided Practice:

Systems and Quadratic Equations (Handout)

Independent Practice

2. What is the y-value of the solution to this systems of equations?

$$\begin{cases} 3x + y = 2 \\ x + 3y = -18 \end{cases}$$

3. What is the solution to this system of equations?

4. Steve buys 2 lb of grapefruit and 3 lb of oranges for \$7,20. Kennedy buys 4 lb of grapefruit and 2 lb of oranges for \$8.80.

Write a systems of equations to model the situation. Wh price per pound for oranges?

*5. Which of the following gives a valid reason for using the given solution method to solve the system of equations shown?

Equation A:
$$4x - 5y = 4$$

Equation B $(2x + 3y = 2)$

system shown?

$$\begin{cases} 4x + 5y = 3\\ 2x + 3y = 1 \end{cases}$$

A. Elimination; a coefficient in Equation A is an integer multiple of a coefficient in Equation B.

2x + 4y = 28

B. Elimination; a coefficient in Equation B is an integer multiple of a coefficient in Equation A.

A.
$$\begin{cases} 4x + 5y = 3 \\ -4x - 6y = 2 \end{cases}$$
B.
$$\begin{cases} 12x + 15y = 9 \\ -12x + 18y = 6 \end{cases}$$

Substitution; equation A can be solved for x in one step by dividing both sides

Substitution; equation B can be solved for x in one step by subtracting 3y from both sides.

C.
$$\begin{cases} 4x + 5y = 3 \\ -4x - 3y = 1 \end{cases}$$
 D.
$$\begin{cases} 12x + 15y = 9 \\ -12x - 18y = -6 \end{cases}$$

7. Is (-1, 3) a solution to the system shown?

$$\begin{cases} y \ge -\frac{1}{2}x + 2\\ 2x + 5 > y \end{cases}$$

8. Circle each ordered pair that is a solution to the system.

$$\begin{cases} y > \frac{1}{2}x + 1 \\ y + 3x \le 6 \end{cases}$$

(-1, -3)

(2, 0)

(4, 6)

9. Solve the equation $x^2 - 2x - 3 = 0$.

X=3

X=-1

10. What are the solutions to the equation $-12x - 9 = 4x^2$?

 $\{-1.5\}$

11. Find the solutions of $2 - x^2 = -x$.

{-1,2}

12. How many solutions does the equation $x^2 - 9 = -5x$

2 solutions

More Independent Practice (Multiple Choice)

Look at the system of equations.

$$\begin{cases} y = -x + 2 \\ 7x + 4y = -1 \end{cases}$$

What is the value of x for the solution to this system of equations?

A. -5

B. -3

C. 3

For which system of inequalities is (-3, 1) a solution?

A. $\begin{cases} x + y < -2 \\ 2x - 3y < -9 \end{cases}$ B. $\begin{cases} x + y < -2 \\ 2x - 3y \le -9 \end{cases}$ C. $\begin{cases} x + y \le -2 \\ 2x - 3y < -9 \end{cases}$ D. $\begin{cases} x + y \le -2 \\ 2x - 3y \le -9 \end{cases}$

A total of 243 adults and children are at a movie theater. There are 109 more adults than children in the theater. If a represents the number of adults and b represents the number of children, which system of equations could be used to find the number of adults and the number of children in the theater?

A.
$$\begin{cases} a+b = 243 \\ a = 109b \end{cases}$$

B.
$$\begin{cases} a+b=24 \\ b=109a \end{cases}$$

A.
$$-\frac{4}{3}$$
 and 5

A.
$$-\frac{4}{3}$$
 and 5 B. $-\frac{5}{3}$ and 4

C.
$$\begin{cases} a+b = 243 \\ a=b+109 \end{cases}$$

D.
$$\begin{cases} a+b = 243 \\ b = a+109 \end{cases}$$

C.
$$-4 \text{ and } \frac{5}{3}$$

D.
$$-5$$
 and $\frac{4}{3}$

Which equation(s) have only one real solution? Select all that apply.

The equation $ax^2 + bx + c = 0$ has no real solutions. Which statement about the graph of $f(x) = ax^2 + bx + c$ could be true?

- A. $x^2 + 6x + 7 = 6x + 7$ B. $7x^2 = 5$
- C. $3x^2 + x 5 = x + 5$ D. $3x^2 + 2x = 2x$
- A. It could pass through B. Its vertex could be at the origin.
- C. It could have a maximum at (-3, 2).
- (-6, 0).
- D. It could have a minimum at (0, 4)

Algebra 1 SOL Review Session

ı